Lymphatic Network in Cancer and Some Chemical Observations

DORINA CORICOVAC¹, HORIA PLES², IULIA PINZARU¹, DANIELA IONESCU^{1*}

¹Victor Babes University of Medicine and Pharmacy, Faculty of Pharmacy, 2 Effimie Murgu Sq.,300041,Timisoara, Romania ²Victor Babes University of Medicine and Pharmacy Faculty of Medicine, 2 Effimie Murgu Sq.,300041,Timisoara, Romania

The lymphatic system, also known as the forgotten circulation has become a topic of high interest in the last years since it was described as a key player in cancer development and metastasis. The aim of the present study was to offer a survey of the literature concerning the anatomy of the lymphatic system in normal conditions, in health, versus the changes undergone in tumors microenvironment. In addition, were discussed the transformations suffered by the lymphatic system molecular markers that form the molecular signature of this system in health and in disease.

Keywords: lymphatic system, cancer, molecular markers, lymphangiogenesis.

The term cancer is used to make mention of a disease entity defined as an abnormal growth of cells that could be caused by multiple changes in gene expression leading to an errant balance between cell proliferation and cell death, and ultimately evolving into a population of cells that can invade tissues and metastasize to distant sites, causing significant morbidity, and, if untreated, death of the host [1].

In order to find an effective treatment for the cure of cancer, a considerable number of studies were focused on the elucidation of the mechanism involved in the development of this malady and, also in the discovery and apprehension of all the factors that play key roles in this fatal process.

In the last decade, the interest regarding the lymphatic system has been increased mainly since it was described as an active player in the dissemination of the metastatic cancer cells and the development of metastasis. It has been reported that in the case of breast cancer and melanoma, the two types of cancer with a high incidence worldwide, the metastasis occurs via the lymphatic system. The elucidation of the structure of lymphatic system and its role in the process of tumorigenesis and metastasis is mandatory in order to conceive the mechanisms involved and to develop new effective anticancer treatments.

This review aims to present the survey of the literature regarding the characterization of the lymphatic system in health and disease and it also focuses on the main markers that constitute the molecular signature of the lymphatics.

The lymphatic system: a historical and anatomical characterization

The first reference to lymphatic system was made by Hippocrates who named it the *white blood* [2]. Howbeit, the interest regarding the functions and the roles of this system remained elusive for many centuries due to the lack of knowledge concerning the lymphatic-specific molecular markers involved in the regulation of lymphatic development and function [3]. The period between 1627, which marked the moment of the first discovery oflymphatic vessels, the *milky veins*, by Gasparo Aselli, an Italian anatomist, and 1902 can be associated with the identification of the collecting lymphatics, the thoracic duct, and of the draining function of the lymphatic system, whereas the questions concerning the genesis of the lymphatic system during embryogenesis remained unanswered [3].

A step forward in this direction was noted at the beginning of the twentieth century, when two competing hypotheses: the *centrifugal model* and the *centripetal model* were proposed.

The *centrifugal model* endorsed the blood vascular origin of lymphatics: the lymphatic system is differentiated from the embryonic blood vascular system during early development and the primitive lymphatics afterwards disseminate throughout the body to form the lymphatic networks, whereas the *centripetal model* asserted that lymphatic endothelial cells (LEC) are originated from mesenchymal cell-derived lymphangioblasts. In addition, the lymphatic endothelial cells form the primitive lymphatic plexuses which only later will be connected to the embryonic veins [3, 4].

A pleader of the *centrifugal model* was Florence Rena Sabin (1902), an American anatomist and medical researcher, who demonstrated in ink-injection experiments developed on pigs that the primary lymph sacs are derived from embryonic veins [3-5].

The Huntington's and McClure's findings concerning the origin of the lymphatic system (the first lymphatics vessels arise independently in the mesenchyme) obtained in an experiment realized in domestic cats validated the *centripetal model* [3, 4, 6].

The debate about the possible origin of the lymphatic system lasted another one hundred years until Wiggle and Oliver (1999) obtained a deficient in lymphatic vascular system mouse model by down-regulating the homeodomain protein Prox1 expression [7, 8], a protein that plays a major role in the migration of the venous endothelial cells

^{*}e-mail: ionescu.daniela@umft.ro

and in the formation of the primary lymphatic vessels during early embryogenesis [3, 4]. These data support the centrifugal model and offers new insights into the lymphatic research [3, 4].

From an anatomical point of view, the lymphatic system also known as the second vascular system, is a complex open-ended network that comprises lymphatic capillaries, initial lymphatic vessels, collecting lymphatic vessels, the thoracic duct and also the lymphoid organs: lymph nodes, thymus, tonsils, spleen and Peyer's patches [3, 9-15]. It was reported that the lymphatic vessels arise very early both in humans (in utero at week 6-7) and in mice (embryonic day E9.5-10.5) after the development of the cardiovascular system [12, 16]. The origin of the lymphatic system is venous, more specifically it originates from a group of lymphatic endothelial cells (LEC), which are blood-vascular endothelial cells that gained lymphatic identity. These cells have the ability to migrate from the anterior cardinal veins and to form lymph sacs, the units responsible for the formation of the entire lymphatic vascular tree via lymphangiogenesis [12, 16]. These data support the theory of Florence Sabin concerning the venous origin of the lymphatic system, the *centrifugal model*.

Molecular Markers	Description Expre	sion in health conditions Express	on in nathological conditions
Prox1	- is a homeodomain	- this marker is	- Prox1
	protein and a	expressed in	expression is
	transcription factor and	developing liver,	up-regulated in
	was firstly identified as	nervous system,	differentiated
	Drosophila protein	heart and pancreas	blood
	prospero [19].	and it plays a key	endothelial
	- it has also been	role in the cell fate	cells (BEC)
	detected in zebrafish,	decisions involved	infected with
	frog, mouse, chicken and	to the anchorage	Kaposi's
	humans, and possesses	of various cell	sarcoma and
	the capacity to maintain	lineages during	herpes virus [3]
	the amino acid	embryogenesis	
	sequences throughou the	[20].	
	species [3, 18]	- the differentiated	
	 the capacity of Prox 1 	blood vascular	
	to induce cellular	endothelial cells	
	differentiation is cell-	(BEC) expressed	
	specific [7].	Prox 1 what	
		determined the	
		transition of these	
		cells to a	
		lymphatic	
		phenotype [3]	
VEGFR-	- it is known as a	- the lymphatic	
2 – KDR	receptor specific for	endothelial cells	
or Flkl	VEGF-A, VEGF-C, and	and the blood	
	VEGF-D [21]	vascular cells in	
	 the function of this 	situ and in vitro	
	receptor in angiogenesis	express this type	
	is well characterized,	of marker [3, 21].	
	whereas its involvement		
	in lymphangiogenesis in		
	not elucidated at this		
	moment [3, 4]		
VEGFR-	- is described in the	- in normal	- previous
3 - Flt4	literature as a member of	conditions	studies indicate
	the VEGF receptor	VEGFR-3 18	that cells of
	family and was the first	expressed during	benign and
	gene that was	emoryonic	malignant
	specifically expressed in	development in	vascular
	the lymphatic	the majority of the	tumors possess
		vascular	an up-regulated
	[22]	endotnellal cells	VECED 2 what
	- it is involved in the	whereas at later	VEGER-3 What
	signaling pathway of the	ames its	idaa af a
	rymphatic-specific	expression is	ncea or a
	growin factors vEGF-C	the lymphotic	promerative
	and VEGP-D	me lymphauc	vasculai
	- n was me mst molecular mericer with	piexuses [22]	VEGER 2 in
	specificity for the	[44]	- VEGEN-J 1S
	specificity for the	- Previous studies	capicado in

 Table 1

 THE LYMPHATIC SYSTEM MOLECULAR MARKERS EXPRESSED IN HEALTH AND IN CANCER

continuated table 1

	formation and attacated	ale accur d' éle ad	the and attration
	lymphatics and attracted considerable attention in the field of lymphatic research. - in addition, it was demonstrated that in transgenic mice with skin-specific overexpression of a VEGFR-3-specific mutant of VEGF-C (VEGFC156S) the activation of this marker leads to promotion of lymphangiogenesis [23].	showed that genetic deletion of VEGFR-3 was associated with a defective blood vessel development characterized by an abnormal vessels structure and fluid accumulation in the pericardial cavity at mouse embryonic day 9.5 (E9.5), which marks the beginning of the lymphatic development [3]	the endothelia of lymphangioma and it represents a useful marker for the diagnostic of this type of cancer [9] - furthermore, it was demonstrated that tumor- associated and wound- associated blood vessels express VEGFR-3 [3, 4]
LYVE-1	 it is known as a lymphatic endothelium- specific hyaluronan (HA) receptor. this marker presents some structural similarities with CD44, a specific marker of blood vascular endothelium [3] it is considered an important lymphatic specific marker together with Prox1 	 it hasn't been detected in the blood vascular endothelial cells its expression was also observed in other cells including: activated tissue macrophages and sinusoidal endothelium of the liver and the spleen [24] 	.1
Angiopo ietin-2 – Ang2	 is a ligand for the endothelial cell-specific tyrosine kinase receptor [25] in a study developed on mice with Ang2 knockout there was noticed damage of the lymphatic system [26] 	- this marker hasn't specificity only on lymphatics, being also detected in smooth muscle cells of large arteries, large veins, and venules, [27].	
Podopla nin	 is a mucin-type transmembrane glycoprotein and was one of the first lymphatic markers identified in the literature it was demonstrated 	 podoplanin was detected in lymphatic, but not in blood vascular endothelial cells in vivo and in vitro [28]. 	

The lymphatic endothelial cells (LEC) descend from blood progenitor cells and present characteristic molecular markers that differentiate these cells from the bloodvascular endothelial cells, including: vascular endothelial growth receptor-3 (VEGFR-3, also known as Flt-4), the

Prospero homeobox-1 fate determining transcription factor, Prox-1, lymphatic vascular endothelial hyaluronan (LYVE-1),podoplanin and other lymphatic-specific chemokines [11, 17].

	that plays an important role in LEC migration, adhesion and tube formation [28].	- moreover, this marker is expressed in other cell types, like: type I alveolar cells of the lung, cells of the lung, cells of the choroid plexus, ciliary epithelial cells of the eye, osteocytes and kidney podocytes [3]	
CCL21 - SLC, Exodus- 2, or 6Ckine	 plays an important role in immunoregulatory and inflammatory processes. another role of this marker is to promote adhesion and to stimulate the migration of thymocytes, T- lymphocytes, macrophages, and neutrophils [3, 4] 	 previous studies indicate its expression in the lymphatic endothelium, but is absent in the blood vascular endothelium, of various organs. it is also observed in the high endothelial venules and the T- cell areas of lymph nodes and Peyer's patches [3]. 	- there are data which sustain the fact that CCR7 is as highly expressed in several breast cancer and malignant melanoma cell lines; metastatic melanoma cell lines that express [4].
Hepatoc yte growth factor (HGF)	 it is also known as scatter factor and it proved to be a potent lymphangiogenesis factor [29] the main roles of this factor are: to induce proliferation, migration, and tube formation of LECs via its receptor HGF-R [10] 		

In table 1 are presented the main molecular markers expressed in lymphatics described in the literature.

Acknowledgements. Theinternal grant financed by UMFVBT: Competifia Parteneriate În Cercetarea Fundamentala Inovativa -Programul III-C1-PCFI-2014/2015 -LYMPHANGIOTRANSFER

References

1.RUDDON RW, Characteristics of human cancers. In: Cancer Biology. 4th Edition. Oxford, Oxford University Press, 2007, 1-16.

2. WILTING J. 2001. New perspectives in lymphangiogenesis research. Microsc Res Tech 55:59-60.

3.HONG YK, SHIN JW, DETMAR M. Development of the lymphatic vascular system: a mystery unravels. Dev Dyn. 2004 Nov; 231(3):462-73.

4.CHOI I, LEE S, HONG YK. The new era of the lymphatic system: no longer secondary to the blood vascular system. Cold Spring Harb Perspect Med. 2012 Apr;2(4):a006445.

5.SABIN FR. 1902. On the origin of the lymphatic system from the veins and the development of t he lymph hearts and thoracic duct in the pig. Am J Anat 1:367–391.

6.HUNTINGTONGS, McCLURE CFW. 1910. The anatomy and development of the jugular lymph sac in the domestic cat (Felis domestica). Am J Anat 10:177–311.

7. WIGLE JT, HARVEY N, DETMAR M, LAGUTINA I, GROSVELD G, GUNN MD, JACKSON DG, OLIVER G. 2002. An essential role for Prox1 in the induction of the lymphatic

8.WIGLE JT, OLIVER G. 1999. Prox1 function is required for the development of the murine lymphatic system. Cell 98:769–778.

9.JUSSILA L, ALITALO K. Vascular growth factors and lymphangiogenesis. Physiol Rev. 2002; 82(3):673-700.

10.CUENI LN, DETMAR M. New insights into the molecular control of the lymphatic vascular system and its role in disease. J Invest Dermatol. 2006 Oct;126(10):2167-77.

11.CUENI LN, DETMAR M. The lymphatic system in health and disease. Lymphat Res Biol. 2008; 6(3-4):109-22.

12.KESLER CT, LIAO S, MUNN LL, PADERA TP. Lymphatic vessels in health and disease. Wiley Interdiscip Rev Syst Biol Med. 2013; 5(1):111-24.

13.NEGRINI D, MORIONDO A. Lymphatic anatomy and biomechanics. J Physiol. 2011; 589(Pt 12):2927-34.

14. ChoI I, LEE S, HONG YK. The new era of the lymphatic system: no longer secondary to the blood vascular system. Cold Spring Harb Perspect Med. 2012 Apr;2(4):a006445.

15. MUMPRECHT V, DETMAR M. Lymphangiogenesis and cancer metastasis. J Cell Mol Med. 2009 Aug;13(8A):1405-16.

16. SIMONS M, EICHMANN A. Physiology. Lymphatics are in my veins. Science. 2013; 341(6146):622-4.

17. ALEXANDER JS, GANTA VC, JORDAN PA, WIITE MH. Gastrointestinal lymphatics in health and disease. Pathophysiology. 2010; 17(4):315-35.

18. SCHAEFER JJ, OLIVER G, HENRY JJ. Conservation of gene expression during embryonic lens formation and cornea-lens transdifferentiation in Xenopus laevis. Dev Dyn. 1999; 215:308-318.

19. HONG YK, DETMAR M. 2003. Prox1, master regulator of the lymphatic vasculature phenotype. Cell Tissue Res 314:85–92.

20. OLIVER G, SOSA-PINEDA B, GEISENDORF S, SPANA EP, DOE CQ, GRUSS P. 1993. Prox 1, a prospero-related homeobox gene expressed during mouse development. Mech Dev 44:3–16.

21. HIRAKAWA S, HONG YK, HARVEY N, SCHACHT V, MATSUDA K, LIBERMANN,T.,DETMAR,M.2003. Identiûcatio n of vascular line age speciûc genes by transcriptional proûling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 162:575–586.

22. KAIPAINEN A, KORHONEN J, MUSTONEN T, VAN HINSBERGH VW, FANG GH, DUMONT D, BREITMAN M, ALITALO K. 1995. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci U S A 92:3566– 3570.

23. VEIKKOLA T, JUSSILA L, MAKINEN T, KARPANEN T, JELTSCH M, PETROVA TV, KUBO H, THURSTON G, McDONALD DM, ACHEN MG, STACKER SA, ALITALO K. 2001. Signalling via vascular endothelial growth factor receptor-3 is suficient for lymphangiogenesis in transgenic mice. EMBO J 20: 1223–1231. 24. JACKSON DG. The lymphatics revisited: new perspectives from the hyaluronan receptor LYVE-1. Trends Cardiovasc Med, 2003; 13:1–7.

25. MAISONPIERRE PC, SURI C, JONES PF, BARTUNKOVA S, WIEGAND SJ, RADZIEJEWSKI C, COMPTON D, MCCLAIN J, ALDRICH TH, PAPADOPOULOS N, DALY TJ, DAVIS S, SATO TN, Yancopoulos GD. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science, 1997; 277:55–60.

26. GALE NW, THURSTON G, HACKETT SF, RENARD R, WANG Q, MCCLAIN C, MARTIN C, WITTE C, WITTE MH, JACKSON D, SURI C, CAMPOCHIARO PA, WIEGAND SJ, YANCOPOULOS GD. 2002.

27. MANDRIOTA SJ, PYKE C, DI SANZA C, QUINODOZ P, PITTET B, Pepper MS. 2000. Hypoxia-inducible angiopoietin-2 expression is mimicked by iodonium compounds and occurs in the rat brain and skin in response to systemic hypoxia and tissue ischemia. Am J Pathol 156:2077–2089.

28. SCHACHT V, RAMIREZ MI, HONG YK, HIRAKAWA S, FENG D, HARVEY N, WILLIAMS M, DVORAK AM, DVORAK HF, OLIVER G, DETMAR M. 2003. T1alpha/podoplanin deûciency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J 22:3546–3556.

29. KAJIYA K, HIRAKAWA S, MA B, DRINNENBERG I, DETMAR M (2005) Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J 24:2885–95

Manuscript received: 14.11.2016